Research Areas - Biotechnology

Microbiology and Bioprocess Engineering

The research in the area of Bioprocess Engineering is being established with inputs from Dr. Nutan Mhetras (Research Associate) who has an expertise in lipases from Aspergilli. The necessary basic equipment for this is available including two laboratory fermenters. It is intended to expand this area into a full-fledged Bioprocess Engineering Laboratory working on additional areas.

Dr. Rale as a Microbiologist has expertise in yeast taxonomy, single cell proteins, acetone-butanol fermentation, pullulan production, lactic acid production and applications of lactic bacteria (yoghurts), just to name a few, over the last more than 45 years. His experience covers all the spheres of academics, consultancy and industry. Currently, he is on the board of three companies in various capacities.

Dr. Vinay Rale


Stem Cell Biology

Micro-environment mediated regulation of Hematopoietic Stem Cells

Mesenchymal stromal cells (MSCs) form an important component of bone marrow microenvironment. These cells respond to the external cues and modulate the fate of hematopoietic stem cells (HSCs). Extra-cellular vesicles (EVs) comprising of micro-vesicles and exosomes form a very important medium through which the stromal cells communicate with the stem cells. Our aim is to examine the molecular composition of EVs collected from MSCs treated with specific signaling modifiers like AKT inhibitors, ERK inhibitors, NO donors, hypoxia-inducing agents and simultaneously examine the effect of these EVs on the functionality of the HSCs. Since EVs can be effectively cryopreserved, they can be stored as "ready-to-use" reagents for application in clinical transplantations.

Neuronal regeneration using Extracellular Vesicles derived from Mesenchymal Stromal Cells

Neurodegenerative diseases are associated with neuronal loss and neural cell death associated with formation of protein aggregates. A long asymptomatic period before disease manifestation, difficulty in diagnosis, lack of validated animal models, and insufficient understanding of the cause and mechanism are major challenges to study neurodegenerative diseases. Our hypothesis is that EVs collected from mesenchymal stromal cell (MSCs) primed with neurotropic factors would possess neuro regenerative properties. Hence our primary aim is to develop a valid in vitro neurodegenerative model (using neuroblastoma cell line Neuro2a) to examine whether EVs secreted by MSCs primed towards neuronal lineage would rescue the Neuro2a cells from degeneration. A byline would be to elucidate the role of autophagy in neuro regeneration.

Dr. Anuradha Vaidya



Antigen-specific immune responses and immunomodulation

Our immune system is characterized by specific immune response to different immunogenic molecules called as antigens. Such specificity is brought about by the immune cells expressing receptors specific to individual antigenic molecule. Population of immune cells expressing such receptors are known as lymphocytes and consists of B - and T cells. T cell receptors (TCR) are always expressed on the cell surface whereas B cell receptors (BCR) can be found in membrane bound as well as secretory from. The secretory form of BCR is called as antibodies. Antibodies are widely used as diagnostic marker as well as therapeutic biomolecules in many pathological conditions associated with infection, autoimmunity and various cancers. Though immunological techniques for detecting the antigen specific antibodies are available, the tools and techniques for isolating the disease associated (including autoimmunity and cancer) antigen-specific B cells are still not available. Therefore, the focus of my research work is to develop the reagents that can be used for the high throughput isolation and characterization, of antigen specific B cells. The availed information can then be used for the development of diagnostics and/or therapeutics.

Additionally, my research work also focuses on the study of immunomodulatory effects of biomolecules produced by probiotic bacteria.

Dr. Bishnudeo Roy


Food Biotechnology

One of the interests in this area is biochemical and molecular characterization of probiotic and industrially important properties of Lactic Acid Bacteria (LAB). Such experiments are performed on the strains obtained from the standard culture collections as well as those isolated in house from various food products. In addition, improvement in certain important features of LAB is also being sought through metabolic engineering as well as adaptive laboratory evolution. These projects are further empowered by genome sequencing and RNA-seq analyses. In a couple of other projects, plant and bacterial β-glucosidases are being characterized by recombinant expression in E. coli for their potential of improving the flavor of fruit products.

Dr. Ram Kulkarni


Avian Virology

Avian and bacteria viruses (Bacteriophages) - experimental animal facility

The objective of the laboratory is to identify and characterize isolated virus by classical virological techniques, biological characterization in animal models and molecular characterization. Laboratory is equipped with all the requirements for growing avian viruses in cell culture, embryonated chicken eggs and in experimental chickens. Virology laboratory is allied to centralized experimental animal facility which is registered with Purpose of Control and Supervision of Experiments on Animals (CPCSEA). Lab is equipped and maintained with all the ethical guidelines and following rules and regulations put forth by the CPCSEA.

Ongoing projects in the laboratory involve isolation; characterization and evaluation of lytic bacteriophages form the sewage water against Escherichia Coli and Salmonella spp.

Dr. Santosh Koratkar


Characterization of avian virus, development of candidate vaccine

The work has been associated with the characterisation of fowl Adenovirus (FAdV) which is responsible for inclusion body hepatitis (IBH) disease in poultry. My work involves isolation of this virus from IBH suspected field samples, their molecular characterisation by genome sequencing and preparation of candidate vaccine using chicken embryonic liver cell cultures. Additionally, candidate vaccine tested using specific pathogen free (SPF) and broiler chickens. Despite of regular vaccination with commercial available vaccines; there are regular outbreaks of IBH causing huge loss in poultry industry. Therefore, this work was aimed to develop new candidate vaccine which can be protective against current IBH outbreaks in India.

Mr. Anil L.Thormothe


Biotransformation of Xenobiotics

Research laboratory is focused on biotransformation of Xenobiotics. In vitro methods are developed to understand the metabolic pathways for pharmaceutical drugs, nanomedicine and environmental pollutants. Analytical technologies are utilized to characterize the structure of metabolites.

Dr. Selvan Ravindran


Quorum Sensing

Bacterial communication and Host-pathogen interactions

The laboratory focuses on understanding the mechanisms underlying the interspecies bacterial quorum sensing and its role in the regulation of virulence phenotypes, thereby providing a prospective for better therapeutics in order to disable the pathogenesis and identify novel drug targets to combat the antimicrobial resistance.

The BSL-II laboratory is well equipped to perform advanced molecular biology techniques involving cell culture, gene manipulation and transcriptome analysis. Ongoing projects involve identification of molecular mechanisms of interspecies bacterial communication on virulence of Streptococcus pyogenes, understanding the host-pathogen interaction in Neisseria meningitidis and Listeria monocytogenes.

Dr. Sunil D. Saroj


Functional genomics, proteomics and bioinformatics

The bioinformatics laboratory at Symbiosis School of Biological Sciences (SSBS) is active in areas of genomics, quantitative proteomics, and database management. The technical expertise of the lab within the genomics field extends to RNA-Sequencing, ChIP-Sequencing and Exome-Sequencing data analysis for identification of differentially expressed and alternatively spliced transcripts, for protein-DNA interaction and for detection of germline variants. The Lab expertise also extends to transcriptome assembly and annotation. The Lab has been involved in protein structure prediction studies in collaboration with external bioinformatics experts.

The Bioinformatics Lab is keen to provide its services in the form of academic collaborations with joint grant applications as well as consultancy services. The general guidelines followed by the Lab can be found here. General Guidelines for collaborative research projects

Dr. Satyajeet Khare



Biomass mediated synthesis of nanostructures and its environmental applications

The research focuses on synthesis of different metal nanostructures using passive biomass and functionalizing these nanoparticles for environmental remediation. Currently the work is being carried on Rapid detection of toxic metal ions in aqueous environmental matrices using nano-composite polymer membrane based optical sensor.

Ms. Pooja Deshpande


Metabolic Diseases

Type 2 Diabetes and associated risk factors

The laboratory focuses on understanding the association of different risk factors with Type 2 diabetes. This laboratory is well equipped to perform different techniques related to clinical biochemistry, hematology and immunology. Ongoing projects involve effect of plant extracts on different clinical conditions and association of oxidative stress and inflammation with ageing and vitamin D deficiency in middle-aged type 2 diabetics.

Dr. Neetu Mishra


Enzyme purification and characterization, fermentation technology, Biomass conversion to commodity chemicals.

Laboratory focuses on purification and characterization of various enzymes like xylanase, β 1-4 xylosidase, lipases, β 1-4 glucosidase and exploitation of these enzymes for industrial applications. Ongoing research areas involves biomass conversion to commodity chemicals such as lactic acids, bioethanol etc. In addition to this, laboratory also focuses on exploitation of lipase for biotransformation and trans-esterification. Ongoing project involves biodiesel production from non-edible oils.

Dr. Nutan C. Mhetras